Robust Triple-Matrix-Recovery-Based Auto-Weighted Label Propagation for Classification
نویسندگان
چکیده
منابع مشابه
Multi Label Text Classification through Label Propagation
Classifying text data has been an active area of research for a long time. Text document is multifaceted object and often inherently ambiguous by nature. Multi-label learning deals with such ambiguous object. Classification of such ambiguous text objects often makes task of classifier difficult while assigning relevant classes to input document. Traditional single label and multi class text cla...
متن کاملMatrix Completion for Multi-label Image Classification
Recently, image categorization has been an active research topic due to the urgent need to retrieve and browse digital images via semantic keywords. This paper formulates image categorization as a multi-label classification problem using recent advances in matrix completion. Under this setting, classification of testing data is posed as a problem of completing unknown label entries on a data ma...
متن کاملCommunity Detection Using Robust Label Propagation Algorithm
Because there is so much randomness, the robustness of label propagation algorithm (LPA) is severely hampered. To reduce the randomness, a label propagation algorithm based on degree (LPAD) is proposed. Only the node with extreme degree is labeled initially, and the label is updated according to the sum degree of its neighbors during iteration. The results show that the randomness of LPAD is re...
متن کاملRobust auto-weighted multi-view subspace clustering with common subspace representation matrix
In many computer vision and machine learning applications, the data sets distribute on certain low-dimensional subspaces. Subspace clustering is a powerful technology to find the underlying subspaces and cluster data points correctly. However, traditional subspace clustering methods can only be applied on data from one source, and how to extend these methods and enable the extensions to combine...
متن کاملTowards Multi Label Text Classification through Label Propagation
Classifying text data has been an active area of research for a long time. Text document is multifaceted object and often inherently ambiguous by nature. Multi-label learning deals with such ambiguous object. Classification of such ambiguous text objects often makes task of classifier difficult while assigning relevant classes to input document. Traditional single label and multi class text cla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2020
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2019.2956015